Spoorwegemplacement – Toxische wolk

MBA: Spoorwegemplacementen

Deze scenariokaart geeft een ongeval met gevaarlijke stoffen weer. In de kaart vindt u informatie over wat er kan gebeuren en wat u kunt doen om het te voorkomen, beperken en bestrijden. Deze informatie kan gebruikt worden bij advisering over ruimtelijke ontwikkelingen.

Bij het gebruik van de kaart is belangrijk in acht te nemen dat het slechts een voorbeeldscenario is. Het daadwerkelijke verloop van het scenario is altijd afhankelijk van situatie specifieke omstandigheden.

Status van de kaart: Actueel

Laatste update: 24 juli 2023


Algemene beschrijving


Een spoorwegemplacement bestaat uit een aantal naast elkaar liggende sporen, dat door spoorwissels onderling verbonden is. Deze sporen zijn niet bestemd voor doorgaand spoorverkeer. Op een spoorwegemplacement stoppen, beginnen of eindigen treinen, worden handelingen met spoorwagens verricht en wordt gerangeerd. Onderhoud, reparatie en schoonmaken vallen niet onder deze hoofdactiviteit.


Aandachtspunten


Rails op een ballastbed van grind

Brandbare vloeistoffen zakken deels hierin weg waardoor een plasbrand minder groot wordt en sneller dooft. Toxische vloeistoffen dampen om dezelfde reden minder snel uit. Bij effectberekeningen en bepaling van hittestralingscontouren dient hier rekening mee gehouden te worden.

Afstanden en bereikbaarheid

Spoorwegemplacementen kunnen erg groot zijn. Daarnaast is de bereikbaarheid soms complex (eenzijdig bereikbaar, weinig overgangen voor hulpverleningsdiensten en niet altijd bovenwinds benaderbaar). De binnenste sporen zijn alleen te bereiken door over/onder/tussen wagons door te klimmen.

Waterwinning

Vanwege de omvang en de geparkeerde treinen/wagons, kan waterwinning meer tijd kosten dan normaal.

Dynamische omgeving

Treinen komen aan, worden gerangeerd en gaan weer weg, waardoor de omgeving van een incident (wagons, inhoud en beladingsgraad) verandert. In de voorbereiding op een incident moet met deze onzekerheid rekening gehouden worden (veiligheidsmarges). Informatie over wagons, inhoud en beladingsgraad moet goed geborgd worden.


Toxische wolk


Een toxische wolk ontstaat doordat toxische vloeistof vrijkomt uit een insluitsysteem en verdampt of dat het in gasvorm vrijkomt. De omvang en ernst van de effecten zijn afhankelijk van de gevaar aspecten van de stof, de vrijgekomen hoeveelheid en de omstandigheden waarbinnen de stof is vrijgekomen. Voor mensen (gezondheidsschade) en materialen (bijv. corrosie) kan dit gevaar opleveren.

In dit scenario word alleen maar ingegaan op het scenario Toxische wolk. Of deze zijn oorsprong vindt in een uitdampende plas of dat de stof in gasvorm vrijkomt, is hiervoor niet relevant. Voor de bestrijding wijkt een toxische plas duidelijk af van een toxische wolk.


Vergunningsadvies


Een advies met betrekking tot het voorkomen en/of bestrijden van een toxische wolk zal alleen maar in het vergunningsadvies terecht komen als hiervoor stationaire maatregelen genomen worden. Dit kan alleen maar in geval van een vaste installatie. Als de bestrijding mobiel of semi-stationair wordt uitgevoerd, wordt dit beschreven in de bedrijfsbrandweeraanwijzing.
Ter voorkoming van het vrijkomen van een toxische wolk bij een vaste installatie, kan in de vergunning opgenomen worden dat er (kwalitatief):

  • Specifieke eisen aan de installatie gesteld worden wat betreft onderhoud, gebruiks- en veiligheidsprocedures etc.;
  • Het personeel in de nabijheid de juiste opleiding/training en instructies heeft om het risico tot een minimum te beperken.

Bij de bestrijding van een toxische wolk bij een vaste installatie, kan in de vergunning opgenomen worden dat (kwalitatief):

  • Er snelle detectie (voor uitstroom product) aanwezig is en dat voor zover relevant de installatie wordt stilgelegd;
  • Er (semi) automatisch effect beperkende maatregelen worden gestart.


Effecten


De effecten van een toxische wolk zijn afhankelijk van een aantal variabelen, te weten:

Betrokken stof: stoffen verschillen van elkaar in toxiciteit en gewicht in gasvorm:

  • Stoffen die meer toxisch zijn, bereiken bij een lage concentratie al gezondheidseffecten en andersom;
  • Een stof die in gasvorm lichter is dan lucht zal sneller opstijgen. Stoffen die net zo zwaar of zwaarder dan lucht zijn, blijven hangen boven het aardoppervlak.

Omstandigheden ter plaatse: weersomstandigheden en afstand tot kwetsbare mensen, gebouwen of installaties.

  • De wind (-richting en –snelheid) bepaalt hoe snel en in welke richting de wolk zich zal verspreiden;
  • De afstand die een wolk moet overbruggen heeft invloed op de concentratie aldaar. Hoe verder van de bron, des te lager de concentratie.

Omdat alle bovenstaande factoren van invloed zijn op de ernst van effecten, is het niet mogelijk om met vuistregels te werken. Er wordt aanbevolen om de effecten door te rekenen met modelleringssoftware (zie laatste paragraaf).


Bedrijfsbrandweer


De bestrijding van een Toxische wolk door de bedrijfsbrandweer is gebaseerd op het verdunnen en opmengen van de toxische wolk met een waterscherm. Voor een effectieve inzet is het van belang dat er:

  1. Snel gealarmeerd wordt;
  2. Duidelijk is om welke stof het gaat;
  3. Er veilig gewerkt kan worden (juiste PBM’s in effectgebied bij opzetten waterschermen);
  4. Voldoende water, pompcapaciteit is;
  5. Voldoende menskracht voor bediening voertuig/pomp, handstralen/waterkanonnen en leiding is;
  6. Snel gestart kan worden met de inzet.

Informatie over punt 1, en 3 kan veelal uit ervaringscijfers, ontwerpspecificatie en testen worden gehaald.
Punt 4 en 5 zijn het resultaat van een realistische inschatting van de omvang van het scenario en de menskracht die nodig is voor opbouw waterwinning, uitrollen slangen en starten inzet.


Kentallen waterscherm

Inzet waterscherm bij toxische wolk

Waterschermen kunnen een toxische wolk verdunnen of opwervelen doordat ze veel lucht verplaatsen.
De benodigde hoeveelheid water (om de toxische wolk te verdunnen tot de AGW), wordt bepaald door de hoeveelheid lucht die daarvoor nodig is:

L = (b / AGW) x 1.000.000

L: Benodigde hoeveelheid lucht in m³
b: bronsterkte in kg/s
AGW: Alarmeringsgrenswaarde in mg/m²

Toelichting
De benodigde hoeveelheid lucht wordt berekend door de bronsterkte te delen door de AGW. De AGW wordt in mg berekend. Omdat de bronsterkte in kg is, wordt de uitkomst van de deling met 1.000.000 vermenigvuldigd.


De hoeveelheid lucht bepaalt vervolgens de benodigde hoeveelheid water:

V = (L / 2000) x 60

V: Benodigd water in L/min;
L: Benodigde lucht in m³

Toelichting
Het benodigd water wordt berekend door de benodigde hoeveelheid lucht te delen door 2.000 (1 liter water verplaatst 2 m³ lucht). Omdat uitkomst de hoeveelheid water per seconde betreft moet deze nog vermenigvuldigd worden met 60.


Naast de benodigde hoeveelheid water die nodig is voor het verdunnen van de wolk tot de AGW, kan ook berekend worden hoeveel water nodig is voor het volledig oplossen van de wolk. Hiervoor kan de volgende formule worden gebruikt:

V = (b / o) x 60 x 100

V: het minimaal benodigde waterdebiet in L/min;
b: bronsterkte in kg/s;
o: oplosbaarheid van de stof in g/100ml.

Toelichting
Het benodigde water wordt berekend door de bronsterkte te delen door de oplosbaarheid. De bronsterkte in kg/s en wordt maal 60 gedaan om op kg/min te komen. De oplosbaarheid wordt maal 100 gedaan om van g/100 ml naar kg/100 l te komen.


Bovenstaande berekeningen zijn modelmatig en houden geen rekening met de omstandigheden. Per scenario moet beoordeeld worden of een effectieve inzet met waterschermen mogelijk is en of de effectiviteit opweegt tegen de risico’s voor personeel. Voor het beoordelen van de effectiviteit dient ten minste naar de volgende factoren te worden gekeken:

  • Wind: hoe meer wind, hoe lager de effectiviteit. Boven 5 m/s is er nog nauwelijks effect.
  • Afstand tot de bron: hoe groter de afstand tot de bron, hoe kleiner de effectiviteit. Optimale afstand tot bron is 10 m (effectiviteit van 90%), bij 20 m is dit nog 15 %.
  • Hoogteverschil: hoe groter het hoogteverschil met de bron, hoe lager de effectiviteit.
  • Watercapaciteit: hoe groter de watercapaciteit, hoe hoger de effectiviteit. Een waterscherm is pas effectief bij capaciteiten boven de 2.000 l/min.
  • Aantal monitoren: meer monitoren in cascade opstelling voor optimaal effect.
  • Vrije uitstroom: bij obstakels tussen bron en scherm is een inzet nauwelijks effectief

Kentallen materieel


Uitgangspunten inzet mobiele middelen

Straalpijp/handlineStraatwaterkanonDakmonitor
Debiet
(l/min)
Worplengte
(meter)
Debiet
(l/min)
Worplengte
(meter)
Debiet
(l/min)
Worplengte
(meter)
Minimum400201.400404.00040
Maximum750303.8006012.000100



Uitgangspunten mobiele koeling

Max. oppervlakMax. werkafstandToelichting
Directe koeling met handstraal20 m²20 mGericht op te koelen object
Indirecte koeling met handstraal25 m²20 mGericht op object waar straal op
stukslaat
Directe koeling met monitor20 m²40 á 50 mGericht op te koelen object
Indirecte koeling met monitor50 m²40 á 50 mGericht op object waar straal op
stukslaat
Waterscherm100 m²25 m

Kentallen personeel

Hiervoor zijn geen harde rekenregels. Door een taak-tijdanalyse kan inzichtelijk worden gemaakt hoeveel tijd een activiteit kost. In de onderstaande tabellen zijn vuistregels opgenomen


Basisuitgangspunten bepaling personele component

Bevelvoerder1 bevelvoerder stuurt max. 8 manschappen aan. In specifieke gevallen kan het nodig zijn om bij minder dan 8 man meerdere bevelvoerders aan te wijzen, b.v. als twee voertuigen ver van elkaar worden ingezet.
Chauffeurs/pompbedienersPer voertuig is er 1 chauffeur/pompbediener. Bij voertuigen zonder pompfunctie is geen pompbediener nodig.
ManschapHet aantal manschappen volgt uit de taak-/tijdanalyse en is afhankelijk van uit
te rollen slanglengtes, te plaatsen monitoren, etc.
(bron: Werkwijzer Bedrijfsbrandweren 2019)


Uitgangspunten inzet straatwaterkanonnen

Aantal StraatwaterkanonnenAantal manschappen
12
25
36
58
69
(bron: Werkwijzer Bedrijfsbrandweren 2019)

Voor bediening van een straalpijp/handline zijn twee manschappen nodig. Bij capaciteiten < 200 l/min volstaat 1 manschap. Bij gebruik van technische hulpmiddelen (robots, slangenkarretjes of super lichte straatwaterkanonnen) kan onderbouwd afgeweken worden.


Rekenblad


Bestrijding van een toxische wolk is gebaseerd op het stoppen van de uitstroom of het verdunnen/opmengen van het vrijgekomen gas. Dit kan stationair of door middel van een bedrijfsbrandweer.
De volgende gegevens zijn nodig voor een goed beeld van het scenario:

  • Om welke stof gaat het?
  • Wat zijn de omstandigheden (uitgaande van worst case)?

Stationair

  • Evt. waterschermen
  • Detectie en automatische start

Semi stationair

  • Vergelijkbaar met stationair, aansturing/bediening niet automatisch maar handmatig

Inschatten benodigde capaciteit op basis van locatie.

Mobiel

  • Bij korte uitstroom kan een mobiele inzet te laat zijn
  • Locatie moet veilig te betreden zijn

Inschatting benodigde capaciteit op basis van voorbereid scenario; voorafgaand aan inzet verifiëren.


Modelleringssoftware


Voorbeelden van softwarepakketten zijn:

  • Safeti-NL (DNV-GL);
  • Effects (GEXCON);
  • POOLFIRE6 (Health & Safety Executive – UK);
  • FRED (GEXCON/Shell Global Solutions);
  • ALOHA (Environmental Protection Agency – USA);
  • Diverse CFD software pakketten.

In tegenstelling tot de modellering van scenario’s ten behoeve van Externe Veiligheid (EV), is voor scenario’s ten behoeve van bedrijfsbrandweerscenario’s geen specifiek softwarepakket
voorgeschreven.

Voor het bepalen van de omvang en effecten van de incidentscenario’s dient gebruik te worden gemaakt van speciale modelleringssoftware. In deze softwarepakketten kunnen zowel de omvang van het scenario (bijvoorbeeld plasoppervlakten), als reikwijdtes van risicocontouren worden bepaald.