Status van de kaart: Actueel
Laatste update: 8 juni 2023
Algemene beschrijving
Een opslagtank voor vloeistoffen kan brandbare vloeistoffen, toxische vloeistoffen en niet gevaarlijke vloeistoffen bevatten. De laatste categorie kan veel overlast veroorzaken bij lekraken, maar valt buiten de scope van deze MBA.
Aandachtspunten
Andere inhoud – andere regels
Voor de inhoud geldt dat het soort opslag bepalend is voor de regelgeving die er betrekking op heeft.
Tankputten
Om uitstroom te kunnen beheersen, kan een tankput om de tank(s) heen gebouwd zijn.
Toxische plas
Een toxische plas ontstaat doordat toxische vloeistof vrijkomt uit een insluitsysteem. Afhankelijk van de gevaar aspecten van de stof, de vrijgekomen hoeveelheid en de omstandigheden waarbinnen de stof is vrijgekomen, zal de stof uitdampen en zo een gevaarlijke concentratie kunnen bereiken voor mensen (gezondheidsschade) en materialen kunnen aantasten (bijvoorbeeld corrosie).
Vergunningsadvies
Een advies met betrekking tot het voorkomen en/of bestrijden van een toxische plas zal alleen maar in het vergunningsadvies terecht komen als hiervoor stationaire maatregelen genomen worden. Dit kan alleen maar in geval van een vaste installatie. Als de bestrijding mobiel of semi-stationair wordt uitgevoerd, wordt dit beschreven in de bedrijfsbrandweeraanwijzing.
Ter voorkoming van uitstromen van toxische vloeistoffen bij een vaste installatie, kan in de vergunning opgenomen worden dat
(kwalitatief):
- Er een lekbak onder het insluitsysteem moet staan, de vloer onder afschot en/of met productafvoer en –opvang wordt uitgevoerd;
- Er specifieke eisen aan de installatie gesteld worden wat betreft onderhoud, gebruiks- en veiligheidsprocedures etc.;
- Het personeel in de nabijheid de juiste opleiding/training en instructies heeft om het risico tot een minimum te beperken.
Bij de bestrijding van een toxische plas bij een vaste installatie, kan in de vergunning opgenomen worden dat (kwalitatief):
- Er snelle detectie (voor uitstroom product) aanwezig is;
- Er een stationaire schuimblussing start in geval van een plasbrand;
Externe documenten
Effecten
De effecten van een toxische plas zijn afhankelijk van een aantal variabelen, te weten:
Betrokken stof: stoffen verschillen van elkaar in toxiciteit, dampspanning en gewicht in gasvorm:
- Stoffen die meer toxisch zijn, bereiken bij een lage concentratie al gezondheidseffecten en andersom;
- De dampspanning geeft aan hoe snel een stof verdampt. Snel verdampende stoffen bereiken makkelijker en sneller een hoge concentratie;
- Een stof die in gasvorm lichter is dan lucht zal makkelijk opstijgen en derhalve weinig effecten op de omgeving hebben. Stoffen die net zo zwaar of zwaarder dan lucht zijn, blijven hangen boven het aardoppervlak.
Omstandigheden ter plaatse: ondergrond, weersomstandigheden en afstand tot kwetsbare mensen, gebouwen of installaties.
- Als de ondergrond de stof makkelijk opneemt (zand, grind) wordt de plas snel kleiner en zal minder snel en lang uitdampen. Op een harde ondergrond (beton) wordt de stof niet opgenomen en blijft de plas lang liggen;
- Temperatuur heeft invloed op de snelheid van verdamping en de wind (-richting en -snelheid), bepaalt hoe snel en in welke richting de damp zich zal verspreiden;
- De afstand die een damp moet overbruggen heeft invloed op de concentratie aldaar. Hoe verder van de bron, des te lager de concentratie.
Omdat alle bovenstaande factoren van invloed zijn op de ernst van effecten, is het niet mogelijk om met vuistregels te werken. Er wordt aanbevolen om de effecten door te rekenen met modelleringssoftware.
Bedrijfsbrandweer
De bestrijding van een toxische plas door de bedrijfsbrandweer is meestal gebaseerd op het (indien mogelijk) afdekken van de plas of met een waterscherm de vrijkomende toxische wolk te verdunnen en op te mengen. Voor een effectieve inzet is het van belang dat er:
- Snel gealarmeerd wordt;
- Duidelijk is om welke stof het gaat (en of er geschikt schuim voor(handen) is);
- Er veilig gewerkt kan worden (juiste PBM’s in effectgebied bij opzetten waterschermen);
- Voldoende schuim, water, pompcapaciteit is;
- Voldoende menskracht voor bediening voertuig/pomp, handstralen/waterkanonnen en leiding is;
- Snel gestart kan worden met de inzet.
Informatie over punt 1, en 3 kan veelal uit ervaringscijfers, ontwerpspecificatie en testen worden gehaald.
Punt 4 en 5 zijn het resultaat van een realistische inschatting van de omvang van het scenario en de menskracht die nodig is voor opbouw waterwinning, uitrollen slangen en starten inzet.
Kentallen plasgroottes
De omvang van het scenario plasbrand wordt bepaald door zaken als: soort stof, inhoud van een insluitsysteem, type van uitstroom (instantaan of continu), de aanwezigheid van obstakels en specifieke weersomstandigheden.
Vuistregels maximale plasoppervlaktes op land, water en spoorwegemplacementen*
Continue uitstroom | Instantane uitstroom | |
Op land** | 1 m³ = 100 m² | 1 m³ = 100 m² |
Op water | 1.500 m² | 10.000 m² |
Op spoorwegemplacementen | 100 m² | 160 m² |
* In deze tabel wordt geen rekening gehouden met type ondergrond. Bij sterk absorberende ondergronden kan het oppervlak afnemen tot 10% van de oorspronkelijke plasgrootte. Ook hier geldt dat het uitgangspunt blijft dat de daadwerkelijke omvang berekend moet worden met modelleringssoftware waarin de ondergrond als parameter kan worden ingevoerd.
** Dit betreffen enkel lekkages die niet gelimiteerd worden door bijvoorbeeld opvangbakken of opstaande randen. In die gevallen geldt vanzelfsprekend het oppervlak van de opvang als maximaal plasoppervlak.
Tabel hieronder geeft voorbeelden voor het berekenen van plasoppervlaktes bij lekkende appendages. Hierbij is onderscheid gemaakt in 3 verschillende situaties; LOC (Loss Of Containment)-opvang met afschot en snelle afvoer, LOC-opvang zonder afvoer en geen LOC-opvang. De oppervlaktes gelden bij vertraagde ontsteking.
Tijdens de brand zal de plas een evenwichtsoppervlak krijgen waarbij de verbrandingssnelheid van het product gelijk is aan de toevoer. Dit evenwichtsoppervlak kan alleen met modellering (software) bepaald worden.
Plasgrootte bij verschillende appendages op land, water en spoorwegemplacementen*
Gatgrootte versus plasgrootte bij appendage branden en brand bij overslag
Proces druk | Plasafmetingen | ||
LOC opvang op afschot naar snelle afvoer (3) | LOC opvang zonder afvoer (4) | Geen LOC opvang | |
Atmosferisch bij 0,1d (1) | 3 m breed t/m afvoer | Oppervlakte opvang | Conform uitstromingsmodel (4) |
Atmosferisch bij full bore 1" (2) | 3,5 m breed t/m afvoer | Oppervlakte opvang | Conform uitstromingsmodel (4) |
Atmosferisch bij full bore 2" (2) | 8 m breed t/m afvoer | Oppervlakte opvang | Conform uitstromingsmodel (4) |
Atmosferisch bij full bore 3" (2) | 10 m breed t/m afvoer | Oppervlakte opvang | Conform uitstromingsmodel (4) |
Tussen 1 en 5 bar abs. Bij 0,1d (1) | 10 m breed t/m afvoer | Oppervlakte opvang | Conform uitstromingsmodel (4) |
Tussen 1 en 5 bar abs. bij 1" tot 3" full bore (2) | 12 m breed t/m afvoer | Oppervlakte opvang | Conform uitstromingsmodel (4) |
* In deze tabel wordt geen rekening gehouden met type ondergrond. Bij sterk absorberende ondergronden kan het oppervlak afnemen tot 10% van de oorspronkelijke plasgrootte. Ook hier geldt dat het uitgangspunt blijft dat de daadwerkelijke omvang berekend moet worden met modelleringssoftware waarin de ondergrond als parameter kan worden ingevoerd.
(1) Uitgangspunt is dat het grootste gat (0,1d) 2 cm in doorsnee is. Dit omdat leiding- diameters van leidingen met gevaarlijke vloeistoffen binnen procesinstallaties in de regel niet groter zijn dan 8” (200mm).
(2) Full-bore lekkages binnen een procesinstallatie kunnen worden veroorzaakt door openstaande drains/vents. Drains en vents zijn in de regel niet groter dan 3”. Guillotine breuken worden normaliter niet reëel geacht i.v.m. onderhouds- en beheerssystemen/procedures.
(3) Tussen de 1 en 5 bar absoluut zal de vloeistof zich over een groter oppervlak verspreiden vanwege de stuwing in de lekstroom. De vloeistofstraal zal of kapot slaan op objecten in de omgeving, of een langere afstand afleggen en uiteenvallen.
(4) Effect modelleringssoftware kan uitstromingsmodellen genereren op verschillende oppervlaktes (beton, grind,etc.) en berekend de plasafmetingen. Deze berekeningen dienen door de opsteller van het bedrijfsbrandweerrapport gemaakt te worden. Eventueel kunnen de resultaten getoetst worden door modelleringssoftware.
Kentallen water/schuimblussing
Om te bepalen hoeveel water nodig is voor een effectieve inzetstrategie, wordt de onderstaande formule gebruikt:
V = O x a
V: het minimaal benodigde waterdebiet
O: het te blussen of te koelen oppervlak
a: van toepassing zijnde de applicatiesnelheid
Om te bepalen hoeveel schuimvormend middel nodig is om een voldoende dekkende schuimlaag op te kunnen brengen, wordt de onderstaande formule gebruikt:
V = O x a x t x f
V: de hoeveelheid schuimvormend middel (SVM) in liters
O: het met schuim af te dekken oppervlak in m²
a: van toepassing zijnde applicatiesnelheid in l/min/m²
t: benodigde tijd voor een stabiele schuimlaag in minuten
f: het bijmengpercentage
Voor het onderhouden van een schuimlaag wordt dezelfde formule gebruikt. Steeds moet gecontroleerd worden of de schuimlaag in stand blijft en indien nodig dient de schuimlaag te worden aangevuld. Omdat continue applicatie niet nodig is, kan worden volstaan met 5-10% van de oorspronkelijk gebruikte capaciteit*.
* Bron: Handreiking Bluswatervoorziening en Bereikbaarheid, Brandweer Nederland
Voor het bepalen van de applicatiesnelheid en benodigde opbrengtijd kan gebruik gemaakt worden van diverse NFPA, IP en PGS normen. Welke norm gebruikt wordt, is afhankelijk van het type installatie en de kenmerken ervan. Hieronder zijn de belangrijkste normen weergegeven.
Uitgangspunten blussen/afdekken gelimiteerde plas
Tijdsduur* | |||
---|---|---|---|
Applicatiesnelheid | Klasse 1 | Klasse 2 | |
Actief/stationair** | 4,1 l/min/m² | 30 min | 20 min |
Mobiel | 6,5 l/min/m² | 30 min | 20 min |
* Bij het bepalen van de benodigde tijdsduur wordt onderscheid gemaakt tussen de klassen waar de koolwaterstof die afgedekt moet worden onder valt. Klasse 1 betreft koolwaterstoffen met een enkele binding (alkanen). Klasse 2 betreft koolwaterstoffen met een dubbeleof driedubbele binding (alkenen en alkynen);
** Dit betreft bijvoorbeeld vast opgestelde schuimkoppen op de rand van een opvangbak of tankput.
Uitgangspunten blussen/afdekken ongelimiteerde plas
Applicatiesnelheid | Tijdsduur | |
Proteïne/fluorproteïne houden schuim | 6,5 l/min/m² | 15 min |
AFFF, FFFP, AFFF (alcohol resistent) en FFFP | 4,1 l/min/m² | 15 min |
Alcohol resistent schuim | Opvragen bij fabrikant | 15 min |
Uitgangspunten mobiel blussen full surface tankbrand
Applicatiesnelheid * | Tijdsduur | |
Vlampunt tussen 37,8°C en 60°C | 6,5 l/min/m² | 50 min |
Vlampunt lager dan 37,8°C, verwarmd boven vlampunt of ruwe olie | 6,5 l/min/m² | 65 min |
*NFPA 11 maakt geen onderscheid in het formaat van de tank. IP-19 daarentegen geeft aan dat bij een grotere tankdiameter ook een grotere applicatiesnelheid gebruikt dient te worden. IP-19 hanteert de volgende dimensies:
Tankdiameter | Applicatiesnelheid |
<45 meter | 6,5 l/min/m² |
45 – 62 meter | 7,3 l/min/m² |
62 – 76 meter | 8,1 l/min/m² |
76 – 91 meter | 9,0 l/min/m² |
>91 meter | 10,4 l/min/m² |
Uitgangspunten actief stationair blussen/afdekken rim seal brand (drijvend dak tank)
Applicatiesnelheid | Tijdsduur | |
Top-of-seal blussing | 12,2 l/min/m² | 20 min |
Below-the-seal blussing | 20,4 l/min/m² | 10 min |
Uitgangspunten actief/stationair blussen afdekken full surface tankbrand**
Applicatiesnelheid | Tijdsduur | |
Vlampunt tussen 37,8°C en 60°C | 4,1 l/min/m² | 30 min |
Vlampunt lager dan 37,8°C, verwarmd boven vlampunt of ruwe olie | 4,1 l/min/m² | 55 min |
Bovenstaande berekeningen zijn gebaseerd op fluorhoudend blusschuim. Voor fluorvrij schuim zijn nog geen internationale richtlijnen opgesteld. Voor applicatiesnelheden en opbrengtijden dient contact opgenomen te worden met de fabrikant
De meest actuele kentallen m.b.t blussing zijn te vinden in de NFPA 11.
**Voor het stationair aanbrengen van de schuimlaag dient de tank over voldoende schuimkoppen te beschikkingen. Afhankelijk van de tankdiameter dient de tank over de volgende aantallen schuimkoppen te beschikken
Diameter tank | Aantal koppen |
<24 meter | 1 |
24 tot 36 meter | 2 |
36 tot 42 meter | 3 |
42 tot 48 meter | 4 |
48 tot 54 meter | 5 |
54 tot 60 meter | 6 |
>60 meter | 6 |
***Voor het aanbrengen van het schuim van onder het vloeistofoppervlak (subsurface application) hanteert NFPA 11 dezelfde applicatiesnelheden en opbrengtijden (NFPA Tabel 5.2.6.5.1)
Kentallen waterscherm
Inzet waterschermen bij toxische wolk
Waterschermen kunnen een toxische wolk verdunnen of opwervelen doordat ze veel lucht verplaatsen.
De benodigde hoeveelheid water (om de toxische wolk te verdunnen tot de AGW), wordt bepaald door de hoeveelheid lucht die daarvoor nodig is:
L = (b / AGW) x 1.000.000
L: Benodigde hoeveelheid lucht in m³
b: bronsterkte in kg/s
AGW: Alarmeringsgrenswaarde in mg/m²
Toelichting
De benodigde hoeveelheid lucht wordt berekend door de bronsterkte te delen door de AGW. De AGW wordt in mg berekend. Omdat de bronsterkte in kg is, wordt de uitkomst van de deling met 1.000.000 vermenigvuldigd.
De hoeveelheid lucht bepaalt vervolgens de benodigde hoeveelheid water:
V = (L / 2000) x 60
V: Benodigd water in L/min;
L: Benodigde lucht in m³
Toelichting
Het benodigd water wordt berekend door de benodigde hoeveelheid lucht te delen door 2.000 (1 liter water verplaatst 2 m³ lucht). Omdat uitkomst de hoeveelheid water per seconde betreft moet deze nog vermenigvuldigd worden met 60.
Naast de benodigde hoeveelheid water die nodig is voor het verdunnen van de wolk tot de AGW, kan ook berekend worden hoeveel water nodig is voor het volledig oplossen van de wolk. Hiervoor kan de volgende formule worden gebruikt:
V = (b / o) x 60 x 100
V: het minimaal benodigde waterdebiet in L/min;
b: bronsterkte in kg/s;
o: oplosbaarheid van de stof in g/100ml.
Toelichting
Het benodigde water wordt berekend door de bronsterkte te delen door de oplosbaarheid. De bronsterkte in kg/s en wordt maal 60 gedaan om op kg/min te komen. De oplosbaarheid wordt maal 100 gedaan om van g/100 ml naar kg/100 l te komen.
Bovenstaande berekeningen zijn modelmatig en houden geen rekening met de omstandigheden. Per scenario moet beoordeeld worden of een effectieve inzet met waterschermen mogelijk is en of de effectiviteit opweegt tegen de risico’s voor personeel. Voor het beoordelen van de effectiviteit dient ten minste naar de volgende factoren te worden gekeken:
- Wind: hoe meer wind, hoe lager de effectiviteit. Boven 5 m/s is er nog nauwelijks effect.
- Afstand tot de bron: hoe groter de afstand tot de bron, hoe kleiner de effectiviteit. Optimale afstand tot bron is 10 m (effectiviteit van 90%), bij 20 m is dit nog 15 %.
- Hoogteverschil: hoe groter het hoogteverschil met de bron, hoe lager de effectiviteit.
- Watercapaciteit: hoe groter de watercapaciteit, hoe hoger de effectiviteit. Een waterscherm is pas effectief bij capaciteiten boven de 2.000 l/min.
- Aantal monitoren: meer monitoren in cascade opstelling voor optimaal effect.
- Vrije uitstroom: bij obstakels tussen bron en scherm is een inzet nauwelijks effectief
Kentallen materieel
Uitgangspunten inzet mobiele middelen
Straalpijp/handline | Straatwaterkanon | Dakmonitor | ||||
---|---|---|---|---|---|---|
Debiet (l/min) | Worplengte (meter) | Debiet (l/min) | Worplengte (meter) | Debiet (l/min) | Worplengte (meter) |
|
Minimum | 400 | 20 | 1.400 | 40 | 4.000 | 40 |
Maximum | 750 | 30 | 3.800 | 60 | 12.000 | 100 |
Bovenstaande kentallen zijn indicatief. In de praktijk zal de exacte worplengte variëren. De feitelijke prestaties zullen daarom middels een live-test moeten worden aangetoond.
Uitgangspunten mobiele koeling
Max. oppervlak | Max. werkafstand | Toelichting | |
Directe koeling met handstraal | 20 m² | 20 m | Gericht op te koelen object |
Indirecte koeling met handstraal | 25 m² | 20 m | Gericht op object waar straal op stukslaat |
Directe koeling met monitor | 20 m² | 40 á 50 m | Gericht op te koelen object |
Indirecte koeling met monitor | 50 m² | 40 á 50 m | Gericht op object waar straal op stukslaat |
Waterscherm | 100 m² | 25 m | – |
Kentallen personeel
Hiervoor zijn geen harde rekenregels. Door een taak-tijdanalyse kan inzichtelijk worden gemaakt hoeveel tijd een activiteit kost. In de onderstaande tabellen zijn vuistregels opgenomen.
Basisuitgangspunten bepaling personele component
Bevelvoerder | Bevelvoerder 1 bevelvoerder stuurt max. 8 manschappen aan. In specifieke gevallen kan het nodig zijn om bij minder dan 8 man meerdere bevelvoerders aan te wijzen, b.v. als twee voertuigen ver van elkaar worden ingezet |
Chauffeurs/ pompbediener | Per voertuig is er 1 chauffeur/pompbediener. Bij voertuigen zonder pompfunctie is geen pompbediener nodig. |
Manschap | Het aantal manschappen volgt uit de taak-/tijdanalyse en is afhankelijk van uit te rollen slanglengtes, te plaatsen monitoren, etc |
Uitgangspunten inzet straatwaterkanonnen
Aantal Straatwaterkanonnen | Aantal manschappen |
1 | 2 |
2 | 5 |
3 | 6 |
5 | 8 |
6 | 9 |
Voor bediening van een straalpijp/handline zijn twee manschappen nodig. Bij capaciteiten < 200 l/min volstaat 1 manschap. Bij gebruik van technische hulpmiddelen (robots, slangenkarretjes of super lichte straatwaterkanonnen) kan onderbouwd afgeweken worden.
Rekenblad
Bestrijding van een toxische plas is gebaseerd op het stoppen van de uitdamping of het verdunnen/opmengen van de vrijgekomen damp. Dit kan stationair of door middel van een bedrijfsbrandweer.
De volgende gegevens zijn nodig voor een goed beeld van het scenario:
- Wat is de omvang van de plas?
- Om welke stof gaat het?
- Wat zijn de omstandigheden (uitgaande van de worst case)?
Stationair
- Lekbak, vloer onder afschot, opvang;
- Schuim nozzels /kanonnen;
- Evt. waterschermen;
- Detectie en automatische start.
Inschatting benodigde capaciteit op basis van locatie en omvang lekbak/opvang.
Semi-stationair
- Vergelijkbaar met stationair, aansturing/bediening niet automatisch maar handmatig.
Mobiel
- Bij zeer snel uitdampende stof kan mobiele inzet te laat komen voor positieve invloed;
- Locatie moet veilig te betreden zijn;
- Stof en schuim geschikt voor elkaar?
Inschatting benodigde capaciteit op basis van voorbereid scenario; voorafgaand aan inzet verifiëren.
Modelleringssoftware
Voorbeelden van softwarepakketten zijn:
- Safeti-NL (DNV-GL);
- Effects (GEXCON);
- POOLFIRE6 (Health & Safety Executive – UK);
- FRED (GEXCON/Shell Global Solutions);
- ALOHA (Environmental Protection Agency – USA);
- Diverse CFD software pakketten.
In tegenstelling tot de modellering van scenario’s ten behoeve van Externe Veiligheid (EV), is voor scenario’s ten behoeve van bedrijfsbrandweerscenario’s geen specifiek softwarepakket
voorgeschreven.
Voor het bepalen van de omvang en effecten van de incidentscenario’s dient gebruik te worden gemaakt van speciale modelleringssoftware. In deze softwarepakketten kunnen zowel de omvang van het scenario (bijvoorbeeld plasoppervlakten), als reikwijdtes van risicocontouren worden bepaald.