Transport & logistiek – Toxische plas

MBA: Transport, logistiek en ondersteuning daarvan

Deze scenariokaart geeft een ongeval met gevaarlijke stoffen weer. In de kaart vindt u informatie over wat er kan gebeuren en wat u kunt doen om het te voorkomen, beperken en bestrijden. Deze informatie kan gebruikt worden bij advisering over ruimtelijke ontwikkelingen.

Bij het gebruik van de kaart is belangrijk in acht te nemen dat het slechts een voorbeeldscenario is. Het daadwerkelijke verloop van het scenario is altijd afhankelijk van situatie specifieke omstandigheden.

Status van de kaart: Actueel

Laatste update: 24 juli 2023


Algemene beschrijving


Onder de kernactiviteit vallen o.a.:

  1. Vervoer van stoffen of goederen;
  2. Opslaan van stoffen of goederen;
  3. Onderhouden, repareren en schoonmaken van voertuigen of werktuigen;
  4. Opstellen van voertuigen, opleggers of aanhangers met gevaarlijke stoffen.

Van de bovenstaande activiteiten worden 1 en 3 niet verder uitgewerkt. Het vervoer van stoffen of goederen komt namelijk niet terecht in de vergunning of bedrijfsbrandweeraanwijzing. Bij het onderhoud en reparatie worden weliswaar gevaarlijke stoffen gebruikt maar de omvang van het gebruik en opslag ervan blijven beperkt.

Activiteiten 2 en 4 leiden tot scenario’s die vergelijkbaar zijn met die van de MBA’s 3 t/m 8.


Toxische plas


Een toxische plas ontstaat doordat toxische vloeistof vrijkomt uit een insluitsysteem. Afhankelijk van de gevaar aspecten van de stof, de vrijgekomen hoeveelheid en de omstandigheden waarbinnen de stof is vrijgekomen, zal de stof uitdampen en zo een gevaarlijke concentratie kunnen bereiken voor mensen (gezondheidsschade) en materialen kunnen aantasten (bijvoorbeeld corrosie).


Vergunningsadvies


Een advies met betrekking tot het voorkomen en/of bestrijden van een toxische plas zal alleen maar in het vergunningsadvies terecht komen als hiervoor stationaire maatregelen genomen worden. Dit kan alleen maar in geval van een vaste installatie. Als de bestrijding mobiel of semi-stationair wordt uitgevoerd, wordt dit beschreven in de bedrijfsbrandweeraanwijzing.

Ter voorkoming van uitstromen van toxische vloeistoffen bij een vaste installatie, kan in de vergunning opgenomen worden dat (kwalitatief):

  • Er een lekbak onder het insluitsysteem moet staan, de vloer onder afschot en/of met productafvoer en –opvang wordt uitgevoerd;
  • Er specifieke eisen aan de installatie gesteld worden wat betreft onderhoud, gebruiks- en veiligheidsprocedures etc.;
  • Het personeel in de nabijheid de juiste opleiding/training en instructies heeft om het risico tot een minimum te beperken.

Bij de bestrijding van een toxische plas bij een vaste installatie, kan in de vergunning opgenomen worden dat (kwalitatief):

  • Er snelle detectie (voor uitstroom product) aanwezig is;
  • Er een stationaire schuimblussing start in geval van een plasbrand;


Effecten


De effecten van een toxische plas zijn afhankelijk van een aantal variabelen, te weten:

Betrokken stof: stoffen verschillen van elkaar in toxiciteit, dampspanning en gewicht in gasvorm:

  1. Stoffen die meer toxisch zijn, bereiken bij een lage concentratie al gezondheidseffecten en andersom;
  2. De dampspanning geeft aan hoe snel een stof verdampt. Snel verdampende stoffen bereiken makkelijker en sneller een hoge concentratie;
  3. Een stof die in gasvorm lichter is dan lucht zal makkelijk opstijgen en derhalve weinig effecten op de omgeving hebben. Stoffen die net zo zwaar of zwaarder dan lucht zijn, blijven hangen boven het aardoppervlak.

Omstandigheden ter plaatse: ondergrond, weersomstandigheden en afstand tot kwetsbare mensen, gebouwen of installaties.

  1. Als de ondergrond de stof makkelijk opneemt (zand, grind) wordt de plas snel kleiner en zal minder snel en lang uitdampen. Op een harde ondergrond (beton) wordt de stof niet opgenomen en blijft de plas lang liggen;
  2. Temperatuur heeft invloed op de snelheid van verdamping en de wind (-richting en -snelheid), bepaalt hoe snel en in welke richting de damp zich zal verspreiden;
  3. De afstand die een damp moet overbruggen heeft invloed op de concentratie aldaar. Hoe verder van de bron, des te lager de concentratie.

Omdat alle bovenstaande factoren van invloed zijn op de ernst van effecten, is het niet mogelijk om met vuistregels te werken. Er wordt aanbevolen om de effecten door te rekenen met modelleringssoftware.


Bedrijfsbrandweer


De bestrijding van een toxische plas door de bedrijfsbrandweer is meestal gebaseerd op het (indien mogelijk) afdekken van de plas of met een waterscherm de vrijkomende toxische wolk te verdunnen en op te mengen. Voor een effectieve inzet is het van belang dat er:

  1. Snel gealarmeerd wordt;
  2. Duidelijk is om welke stof het gaat (en of er geschikt schuim voor(handen) is);
  3. Er veilig gewerkt kan worden (juiste PBM’s in effectgebied bij opzetten waterschermen);
  4. Voldoende schuim, water, pompcapaciteit is;
  5. Voldoende menskracht voor bediening voertuig/pomp, handstralen/waterkanonnen en leiding is;
  6. Snel gestart kan worden met de inzet.

Informatie over punt 1, en 3 kan veelal uit ervaringscijfers, ontwerpspecificatie en testen worden gehaald.
Punt 4 en 5 zijn het resultaat van een realistische inschatting van de omvang van het scenario en de menskracht die nodig is voor opbouw waterwinning, uitrollen slangen en starten inzet.


Kentallen plasomvang

De omvang van het scenario plasbrand wordt bepaald door zaken als: soort stof, inhoud van een insluitsysteem, type van uitstroom (instantaan of continu), de aanwezigheid van obstakels en specifieke weersomstandigheden.

Vuistregels maximale plasoppervlaktes op land, water en spoorwegemplacementen*

Continue uitstroomInstantane uitstroom
Op land**1 m³ = 100 m²1 m³ = 100 m²
Op water1.500 m²10.000 m²
Op spoorwegemplacementen100 m²160 m²

* In deze tabel wordt geen rekening gehouden met type ondergrond. Bij sterk absorberende ondergronden kan het oppervlak afnemen tot 10% van de oorspronkelijke plasgrootte. Ook hier geldt dat het uitgangspunt blijft dat de daadwerkelijke omvang berekend moet worden met modelleringssoftware waarin de ondergrond als parameter kan worden ingevoerd.
** Dit betreffen enkel lekkages die niet gelimiteerd worden door bijvoorbeeld opvangbakken of opstaande randen. In die gevallen geldt vanzelfsprekend het oppervlak van de opvang als maximaal plasoppervlak.

Tabel hieronder geeft voorbeelden voor het berekenen van plasoppervlaktes bij lekkende appendages. Hierbij is onderscheid gemaakt in 3 verschillende situaties; LOC (Loss Of Containment)-opvang met afschot en snelle afvoer, LOC-opvang zonder afvoer en geen LOC-opvang. De oppervlaktes gelden bij vertraagde ontsteking.
Tijdens de brand zal de plas een evenwichtsoppervlak krijgen waarbij de verbrandingssnelheid van het product gelijk is aan de toevoer. Dit evenwichtsoppervlak kan alleen met modellering (software) bepaald worden.

Plasgrootte bij verschillende appendages op land, water en spoorwegemplacementen*


Gatgrootte versus plasgrootte bij appendage branden en brand bij overslag

Proces drukPlasafmetingen
LOC opvang op afschot naar snelle afvoer (3)LOC opvang zonder afvoer (4)Geen LOC opvang
Atmosferisch bij 0,1d (1)3 m breed t/m afvoerOppervlakte opvangConform uitstromingsmodel (4)
Atmosferisch bij full bore 1" (2)3,5 m breed t/m afvoerOppervlakte opvangConform uitstromingsmodel (4)
Atmosferisch bij full bore 2" (2)
8 m breed t/m afvoerOppervlakte opvangConform uitstromingsmodel (4)
Atmosferisch bij full bore 3" (2)10 m breed t/m afvoerOppervlakte opvangConform uitstromingsmodel (4)
Tussen 1 en 5 bar abs. Bij 0,1d (1)10 m breed t/m afvoerOppervlakte opvangConform uitstromingsmodel (4)
Tussen 1 en 5 bar abs. bij 1" tot 3" full bore (2)12 m breed t/m afvoerOppervlakte opvangConform uitstromingsmodel (4)

* In deze tabel wordt geen rekening gehouden met type ondergrond. Bij sterk absorberende ondergronden kan het oppervlak afnemen tot 10% van de oorspronkelijke plasgrootte. Ook hier geldt dat het uitgangspunt blijft dat de daadwerkelijke omvang berekend moet worden met modelleringssoftware waarin de ondergrond als parameter kan worden ingevoerd.

(1) Uitgangspunt is dat het grootste gat (0,1d) 2 cm in doorsnee is. Dit omdat leiding- diameters van leidingen met gevaarlijke vloeistoffen binnen procesinstallaties in de regel niet groter zijn dan 8” (200mm).
(2) Full-bore lekkages binnen een procesinstallatie kunnen worden veroorzaakt door openstaande drains/vents. Drains en vents zijn in de regel niet groter dan 3”. Guillotine breuken worden normaliter niet reëel geacht i.v.m. onderhouds- en beheerssystemen/procedures.
(3) Tussen de 1 en 5 bar absoluut zal de vloeistof zich over een groter oppervlak verspreiden vanwege de stuwing in de lekstroom. De vloeistofstraal zal of kapot slaan op objecten in de omgeving, of een langere afstand afleggen en uiteenvallen.
(4) Effect modelleringssoftware kan uitstromingsmodellen genereren op verschillende oppervlaktes (beton, grind,etc.) en berekend de plasafmetingen. Deze berekeningen dienen door de opsteller van het bedrijfsbrandweerrapport gemaakt te worden. Eventueel kunnen de resultaten getoetst worden door modelleringssoftware.


Kentallen water/schuimblussing

Om te bepalen hoeveel water nodig is voor een effectieve inzetstrategie, wordt de onderstaande formule gebruikt:

V = O x a

V: het minimaal benodigde waterdebiet
O: het te blussen of te koelen oppervlak
a: van toepassing zijnde de applicatiesnelheid

Om te bepalen hoeveel schuimvormend middel nodig is om een voldoende dekkende schuimlaag op te kunnen brengen, wordt de onderstaande formule gebruikt:

V = O x a x t x f

V: de hoeveelheid schuimvormend middel (SVM) in liters
O: het met schuim af te dekken oppervlak in m²
a: van toepassing zijnde applicatiesnelheid in l/min/m²
t: benodigde tijd voor een stabiele schuimlaag in minuten
f: het bijmengpercentage

Voor het onderhouden van een schuimlaag wordt dezelfde formule gebruikt. Steeds moet gecontroleerd worden of de schuimlaag in stand blijft en indien nodig dient de schuimlaag te worden aangevuld. Omdat continue applicatie niet nodig is, kan worden volstaan met 5-10% van de oorspronkelijk gebruikte capaciteit*.

* Bron: Handreiking Bluswatervoorziening en Bereikbaarheid, Brandweer Nederland

Voor het bepalen van de applicatiesnelheid en benodigde opbrengtijd kan gebruik gemaakt worden van diverse NFPA, IP en PGS normen. Welke norm gebruikt wordt, is afhankelijk van het type installatie en de kenmerken ervan. Hieronder zijn de belangrijkste normen weergegeven.


Uitgangspunten blussen/afdekken gelimiteerde plas

Tijdsduur*
ApplicatiesnelheidKlasse 1Klasse 2
Actief/stationair**4,1 l/min/m²30 min20 min
Mobiel6,5 l/min/m²30 min20 min

* Bij het bepalen van de benodigde tijdsduur wordt onderscheid gemaakt tussen de klassen waar de koolwaterstof die afgedekt moet worden onder valt. Klasse 1 betreft koolwaterstoffen met een enkele binding (alkanen). Klasse 2 betreft koolwaterstoffen met een dubbeleof driedubbele binding (alkenen en alkynen);
** Dit betreft bijvoorbeeld vast opgestelde schuimkoppen op de rand van een opvangbak of tankput.


Uitgangspunten blussen/afdekken ongelimiteerde plas

ApplicatiesnelheidTijdsduur
Proteïne/fluorproteïne houden schuim6,5 l/min/m²15 min
AFFF, FFFP, AFFF (alcohol resistent) en FFFP4,1 l/min/m²15 min
Alcohol resistent schuimOpvragen bij fabrikant15 min
(Bron: NFPA 11 (2016), tabel 5.8.1.2 en tabel 5.6.5.3.1)

Uitgangspunten mobiel blussen full surface tankbrand

Applicatiesnelheid *Tijdsduur
Vlampunt tussen 37,8°C en 60°C6,5 l/min/m²50 min
Vlampunt lager dan 37,8°C, verwarmd
boven vlampunt of ruwe olie
6,5 l/min/m²65 min
(Bron: NFPA 11 (2016), tabel 5.2.4.2.2)

*NFPA 11 maakt geen onderscheid in het formaat van de tank. IP-19 daarentegen geeft aan dat bij een grotere tankdiameter ook een grotere applicatiesnelheid gebruikt dient te worden. IP-19 hanteert de volgende dimensies:

TankdiameterApplicatiesnelheid
<45 meter6,5 l/min/m²
45 – 62 meter7,3 l/min/m²
62 – 76 meter8,1 l/min/m²
76 – 91 meter9,0 l/min/m²
>91 meter10,4 l/min/m²

Uitgangspunten actief stationair blussen/afdekken rim seal brand (drijvend dak tank)

ApplicatiesnelheidTijdsduur
Top-of-seal blussing12,2 l/min/m²20 min
Below-the-seal blussing20,4 l/min/m²10 min
Bron: NFPA 11 (2016), tabel 5.3.5.3.2 en tabel 5.3.5.3.6.1

Uitgangspunten actief/stationair blussen afdekken full surface tankbrand**

ApplicatiesnelheidTijdsduur
Vlampunt tussen 37,8°C en 60°C4,1 l/min/m²30 min
Vlampunt lager dan 37,8°C, verwarmd
boven vlampunt of ruwe olie
4,1 l/min/m²55 min
Bron: NFPA 11 (2016), tabel 5.2.5.2.2. en tabel 5.2.6.5.1***

Bovenstaande berekeningen zijn gebaseerd op fluorhoudend blusschuim. Voor fluorvrij schuim zijn nog geen internationale richtlijnen opgesteld. Voor applicatiesnelheden en opbrengtijden dient contact opgenomen te worden met de fabrikant

De meest actuele kentallen m.b.t blussing zijn te vinden in de NFPA 11.

**Voor het stationair aanbrengen van de schuimlaag dient de tank over voldoende schuimkoppen te beschikkingen. Afhankelijk van de tankdiameter dient de tank over de volgende aantallen schuimkoppen te beschikken

Diameter tankAantal koppen
<24 meter1
24 tot 36 meter2
36 tot 42 meter3
42 tot 48 meter4
48 tot 54 meter5
54 tot 60 meter6
>60 meter6
(Bron: NFPA 11 (2016), Tabel 5.2.5.2.1)

***Voor het aanbrengen van het schuim van onder het vloeistofoppervlak (subsurface application) hanteert NFPA 11 dezelfde applicatiesnelheden en opbrengtijden (NFPA Tabel 5.2.6.5.1)


Kentallen waterscherm

Inzet waterschermen bij toxische wolk

Waterschermen kunnen een toxische wolk verdunnen of opwervelen doordat ze veel lucht verplaatsen.
De benodigde hoeveelheid water (om de toxische wolk te verdunnen tot de AGW), wordt bepaald door de hoeveelheid lucht die daarvoor nodig is:

L = (b / AGW) x 1.000.000

L: Benodigde hoeveelheid lucht in m³
b: bronsterkte in kg/s
AGW: Alarmeringsgrenswaarde in mg/m²

Toelichting
De benodigde hoeveelheid lucht wordt berekend door de bronsterkte te delen door de AGW. De AGW wordt in mg berekend. Omdat de bronsterkte in kg is, wordt de uitkomst van de deling met 1.000.000 vermenigvuldigd.


De hoeveelheid lucht bepaalt vervolgens de benodigde hoeveelheid water:

V = (L / 2000) x 60

V: Benodigd water in L/min;
L: Benodigde lucht in m³

Toelichting
Het benodigd water wordt berekend door de benodigde hoeveelheid lucht te delen door 2.000 (1 liter water verplaatst 2 m³ lucht). Omdat uitkomst de hoeveelheid water per seconde betreft moet deze nog vermenigvuldigd worden met 60.


Naast de benodigde hoeveelheid water die nodig is voor het verdunnen van de wolk tot de AGW, kan ook berekend worden hoeveel water nodig is voor het volledig oplossen van de wolk. Hiervoor kan de volgende formule worden gebruikt:

V = (b / o) x 60 x 100

V: het minimaal benodigde waterdebiet in L/min;
b: bronsterkte in kg/s;
o: oplosbaarheid van de stof in g/100ml.

Toelichting
Het benodigde water wordt berekend door de bronsterkte te delen door de oplosbaarheid. De bronsterkte in kg/s en wordt maal 60 gedaan om op kg/min te komen. De oplosbaarheid wordt maal 100 gedaan om van g/100 ml naar kg/100 l te komen.


Bovenstaande berekeningen zijn modelmatig en houden geen rekening met de omstandigheden. Per scenario moet beoordeeld worden of een effectieve inzet met waterschermen mogelijk is en of de effectiviteit opweegt tegen de risico’s voor personeel. Voor het beoordelen van de effectiviteit dient ten minste naar de volgende factoren te worden gekeken:

  • Wind: hoe meer wind, hoe lager de effectiviteit. Boven 5 m/s is er nog nauwelijks effect.
  • Afstand tot de bron: hoe groter de afstand tot de bron, hoe kleiner de effectiviteit. Optimale afstand tot bron is 10 m (effectiviteit van 90%), bij 20 m is dit nog 15 %.
  • Hoogteverschil: hoe groter het hoogteverschil met de bron, hoe lager de effectiviteit.
  • Watercapaciteit: hoe groter de watercapaciteit, hoe hoger de effectiviteit. Een waterscherm is pas effectief bij capaciteiten boven de 2.000 l/min.
  • Aantal monitoren: meer monitoren in cascade opstelling voor optimaal effect.
  • Vrije uitstroom: bij obstakels tussen bron en scherm is een inzet nauwelijks effectief

Kentallen materieel

Uitgangspunten inzet mobiele middelen

Straalpijp/handlineStraatwaterkanonDakmonitor
Debiet
(l/min)
Worplengte
(meter)
Debiet
(l/min)
Worplengte
(meter)
Debiet
(l/min)
Worplengte
(meter)
Minimum400201.400404.00040
Maximum750303.8006012.000100

Bovenstaande kentallen zijn indicatief. In de praktijk zal de exacte worplengte variëren. De feitelijke prestaties zullen daarom middels een live-test moeten worden aangetoond.

Uitgangspunten mobiele koeling

Max.
oppervlak
Max.
werkafstand
Toelichting
Directe koeling met handstraal20 m²20 mGericht op te koelen object
Indirecte koeling met handstraal25 m²20 mGericht op object waar straal op
stukslaat
Directe koeling met monitor20 m²40 á 50 mGericht op te koelen object
Indirecte koeling met monitor50 m²40 á 50 mGericht op object waar straal op
stukslaat
Waterscherm100 m²25 m

Kentallen personeel

Hiervoor zijn geen harde rekenregels. Door een taak-tijdanalyse kan inzichtelijk worden gemaakt hoeveel tijd een activiteit kost. In de onderstaande tabellen zijn vuistregels opgenomen.

Basisuitgangspunten bepaling personele component

BevelvoerderBevelvoerder 1 bevelvoerder stuurt max. 8 manschappen aan. In specifieke gevallen kan het nodig zijn om bij minder dan 8 man meerdere bevelvoerders aan te wijzen, b.v. als twee voertuigen ver van elkaar worden ingezet
Chauffeurs/
pompbediener
Per voertuig is er 1 chauffeur/pompbediener. Bij voertuigen zonder pompfunctie is geen pompbediener nodig.
ManschapHet aantal manschappen volgt uit de taak-/tijdanalyse en is afhankelijk van uit te rollen slanglengtes, te plaatsen monitoren, etc
(bron: Werkwijzer Bedrijfsbrandweren 2019)

Uitgangspunten inzet straatwaterkanonnen

Aantal StraatwaterkanonnenAantal manschappen
12
25
36
58
69
(bron: Werkwijzer Bedrijfsbrandweren 2019)

Voor bediening van een straalpijp/handline zijn twee manschappen nodig. Bij capaciteiten < 200 l/min volstaat 1 manschap. Bij gebruik van technische hulpmiddelen (robots, slangenkarretjes of super lichte straatwaterkanonnen) kan onderbouwd afgeweken worden.


Rekenblad


Bestrijding van een toxische plas is gebaseerd op het stoppen van de uitdamping of het verdunnen/opmengen van de vrijgekomen damp. Dit kan stationair of door middel van een bedrijfsbrandweer.
De volgende gegevens zijn nodig voor een goed beeld van het scenario:

  • Wat is de omvang van de plas?
  • Om welke stof gaat het?
  • Wat zijn de omstandigheden (uitgaande van de worst case)?

Stationair

  • Lekbak, vloer onder afschot, opvang;
  • Schuim nozzels /kanonnen;
  • Evt. waterschermen;
  • Detectie en automatische start.

Semi-stationair

  • Vergelijkbaar met stationair, aansturing/bediening niet automatisch maar handmatig.

Inschatting benodigde capaciteit op basis van locatie en omvang lekbak/opvang.

Mobiel

  • Bij zeer snel uitdampende stof kan mobiele inzet te laat komen voor positieve invloed;
  • Locatie moet veilig te betreden zijn;
  • Stof en schuim geschikt voor elkaar?

Inschatting benodigde capaciteit op basis van voorbereid scenario; voorafgaand aan inzet verifiëren.


Modelleringssoftware


Voorbeelden van softwarepakketten zijn:

  • Safeti-NL (DNV-GL);
  • Effects (GEXCON);
  • POOLFIRE6 (Health & Safety Executive – UK);
  • FRED (GEXCON/Shell Global Solutions);
  • ALOHA (Environmental Protection Agency – USA);
  • Diverse CFD software pakketten.

In tegenstelling tot de modellering van scenario’s ten behoeve van Externe Veiligheid (EV), is voor scenario’s ten behoeve van bedrijfsbrandweerscenario’s geen specifiek softwarepakket
voorgeschreven.

Voor het bepalen van de omvang en effecten van de incidentscenario’s dient gebruik te worden gemaakt van speciale modelleringssoftware. In deze softwarepakketten kunnen zowel de omvang van het scenario (bijvoorbeeld plasoppervlakten), als reikwijdtes van risicocontouren worden bepaald.